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Abstract. The electrical resistivity of liquid Nix In1−x alloys has been measured as a function of
temperature (between the melting point and 1100◦C) and of concentration in 10 at.% steps over
the whole phase diagram. The concentration dependence of the resistivity shows a maximum at
about 60 at.% nickel. In the neighbourhood of this concentration, the temperature dependence
(dρ/dT ) changes sign. We have interpreted semi-quantitatively our experimental results using
the extended Faber–Ziman theory within thet matrix formalism.

1. Introduction

In simple metals such as indium, the current is considered to be carried in an s–p conduction
band and the electronic transport properties are well described by the nearly-free electron
theory. However, when 3d metals are alloyed, the situation is less clear because of the
presence of d electrons. This can bring important modifications, an increase in the resistivity
for example. The main purpose of this work is to examine the effects of the alloying of
nickel (which has a nearly full 3d band) on the resistivity of indium, which has a valency
Z = 3. After recalling briefly the formalism and the experimental technique used, we
present and discuss the electrical resistivity isotherm of the Ni–In system.

The theoretical interpretation is based on Ziman’s [1] theory (for pure metals) extended
to normal metal alloys by Faber and Ziman [2]. This theory has been used for pure noble
metals by Evanset al [3] and for transition metal alloys (extended Faber–Ziman theory)
by Dreirachet al [4]. Some calculations on rare earth metals have been performed by
Delley and Beck [5]. Recently Vinckelet al [6] performed an energy dependent calculation
of liquid silver–gallium alloys by a numerical derivation of the resistivity versus electron
energy.

In this work we calculated the resistivity using the formula recalled by Vinckelet al [6].
The experimental density is taken from Crawley [7] while the hard-sphere packing fraction
is given by Waseda [8]. The input parameters for alloys are deduced from the pure metals
parameters using a linear combination with concentration.

2. Experimental method

The electrical resistivity was measured using a four-probe technique on metals having
99.999% purity. In this work, we used a quartz cell fitted with tungsten electrodes, identical
to that described by Benazziet al [9]. Further experimental details have been described
by Gasser [10]. One important advantage of this cell is the possibility of changing the
composition of the alloy during the experiment. Our attention was focused on the possibility
of reactions at high nickel concentration between nickel and the tungsten electrode wires.
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3. Experimental results

We plot the measured resistivity versus temperature for Ni–In in figure 1. For this alloy
the resistivity increases with increasing nickel concentration. A maximum is obtained for
Ni–In at 60 at.% Ni. We represent in figure 2 the Ni–In electrical resistivity and in figure 3
its temperature coefficient as a function of nickel concentration at 1000◦C. The resistivity
does not depend linearly on the temperature (figure 1). The experimental data have been
fitted by a second-order polynomial law (with a correlation factor better than 99.9987% for
all concentrations). The coefficients are reported in table 1. As can be seen in figure 2 the
resistivity of Ni–In has a maximum of 100µ� cm at about 60 at.% Ni. A minimum of the
temperature coefficient is observed in figure 3 and is shifted to a value of about 40 at.% Ni.

Figure 1. Resistivity of Nix In1−x alloys between the liquidus and 1100◦C.

4. Discussion

Due to important experimental difficulties only a few measurements are available for liquid
transition metal–normal metal alloys (TM–NM). Some of them have been determined at
ETH Zürich: Fe–Ge, Co–Ge and Mn–Ge alloys [11]. Others have been measured at Metz,
such as Mn–In, Mn–Sn and Mn–Sb alloys [12]. Work has been done at Niigata on dilute
TM (between 2 and 6 at.%) in polyvalent metals. Tamaki [13] presents the resistivity of
tin–TM alloys, while Ohnoet al [14] describe antimony–TM alloys up to temperatures
of about 900◦C. We observed like G̈untherodt and K̈unzi [11] and Gasser and Kleim
[12] a maximum of the resisitivity and a minimum of its temperature coefficient (which
becomes negative). This minimum is qualitatively understood in the extended Faber–Ziman
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Figure 2. The isotherm of the resistivity of Ni–In at 1000◦C.

Table 1. Coefficients of the least-squares fit to the electrical resistivity of liquid alloys for
Nix In1−x by ρ = a0 + a1T + a2T

2: T is in degrees Celsius andρ in µ� cm.

x a0 a1 × 103 a2 × 106

0 28.67 23.92 —
0.1 43.67 8.059 5.19
0.2 66.53 −20.22 17.22
0.3 113.55 −61.34 27.71
0.4 138.58 −73.85 29.49
0.5 90.77 14.44 −6.29
0.54 108.04 −14.64 5.83
0.6 109.64 −21.29 12.061
0.73 17.39 135.15 −56.33

theory and is obtained when the mean number of conduction electrons is of about 1.8
electrons/atom. This indicates clearly that nickel behaves as a monovalent metal in the
Ni–In alloys. The maximum of the resistivity versus concentration curve is obtained a little
above the mean valency of 2.1. This shift can be observed in the results of both Güntherodt
and Künzi [11] and Gasser and Kleim [12] papers, but has not been discussed in these
papers.

The resisitivity of a liquid metal can be writtenρ ∝ (1/k6
F )
∫ 2kF

0 a(q)t2(q)q3 dq, where
a(q) is the structure factor andt2(q) is the square of thet matrix. In the case of an alloy the
integrand is simply a concentration weighted linear combination of partial structure factors
and form factors [6]. Of course the limit of integration 2kF varies with the mean valency
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Figure 3. The isotherm of the temperature coefficient of the resistivity of Ni–In at 1000◦C.

of the alloys. A typical shape of the structure factors can be seen in Enderby’s review
article [15]. The shape of the form factor can be seen in the article by Lee and Lichter
[16] in the same book. If we take the producta(q)t2(q) equal to one, the resistivity is
inversely proportional tok6

F while the integral is proportional tok4
F . Thus the resistivity

decreases as 1/k2
F with kF (with valency). The integrand is modulated by the structure

factor which presents a maximum at aq vector corresponding to a valency near 1.8 and
which becomes lower than one for a valency nearZ = 3. This explains why the resistivity
versus concentration curve must present a maximum for a mean valency belowZ = 3. The
observed value is 2.1 electrons/atom. To explain the shift we must remember thatt2(q)

modulates also the integrand and has a node near 0.8× 2kF where the integrand is very
small.

The temperature coefficient of the resistivity is a complicated function of the atomic
volume. To understand it, it is necessary to remember that the density decreases with
temperature. The atomic volume�0 increases with increasingT . The Fermi wave vector
kF (k3

F = 3π2Z/�0) decreases with increasingT . As disorder increases (with increasing
T ) the structure factor tends to unity: this means that the smallq value of the structure
factor increases and that the first peak decreases, while the first minimum increases again.
The prefactor of the resistivity 1/k6

F increases, while the limit of integration 2kF decreases.
The integrand has a part which increases (forZ < 1.2), a part which descreases (the
first peak with 1.2 < Z < 3) and a part forZ > 3 which increases again. The form
factor is normed at− 2

3EF for q = 0 and decreases with increasing temperature. The
integrand is heavily weighted byq3. For all these reasons the resistivity has a minimum
in the temperature coefficient when 2kF is situated in the first peak of the structure factor.
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Sometimes (depending on the weight of the different variations) the temperature coefficient
can become negative. The position of the minimum of the temperature coefficient versus
concentration lies very near the position of the main peak (Z ∼ 1.8).

A quantitative theoretical discussion of these kind of curves was first given by
Dreirachet al [4]. They replace the transition rate given in the Born approximation (with
pseudopotentials) by the probability of scattering by a muffin tin potential traduced in thet

matrix.
The calculations of Dreirachet al [4] were performed in a quasi-crystalline

approximation (QCA). Hiritaet al [17] replaced the QCA approximation by a method
given by Mukhopadhyay [18] using the experimental pair distribution function to construct
the muffin tin potential. This method was successfully applied to Cu–Mn, Co–Ge, Ge–Mn
and Sn–Co alloys and gave surprisingly good results (within 30% accuracy however). The
electronic structure for transition metals was always (3d)n (4s)1, which is questionable.
An energy band shift and an effective mass permitted the fairly good fit to be achieved.
Esposito and Ehrenreich [19] showed that this approach was not fully consistent for pure
liquid metals and obtained (with a consistent calculation) 1130µ� cm for pure liquid iron
while Hirita et al [17] obtained 182µ� cm (to be compared to an experimental value
of 140µ� cm). For liquid cobalt Esposito and Ehrenreich [19] obtained 329µ� cm, to
be compared to 83µ� cm obtained by Hiritaet al [17] and 115µ� cm, which is the
experimental value. We do not know of any other transition metal alloy calculation.

In figure 2 we compare our own calculations with the experimental resistivity versus
concentration curve at 1000◦C. In figure 3 we compare the temperature coefficients.
We observe that a resistivity maximum occurs at a higher nickel concentration than
in the experimental curve. The temperature coefficient is also shifted to higher nickel
concentrations. Hiritaet al [17] observed also a shift of the theoretical maximum to
higher transition metal concentration for both Co–Ge and Co–Sn alloys (but nobody to
our knowledge has calculated the temperature coefficient of the resistivity).

The same phenomenon is observed by Dreirachet al [4] on Fe–Ge alloys, but these
authors did not present a theoretical calculation of the temperature coefficient either.

One cannot use the Faber–Ziman formula because pseudopotentials are not adequate to
describe transition metals. The phase shifts of normal metals such as indium,η0 = 1.0602,
η1 = 0.7210,η2 = 0.1692 are determined [20] from the Shaw pseudopotential (in the Born
approximation). We took the phase shifts of Lautenschläger and Mrosan [21] obtained from
muffin tin potentials for nickel:η0 = −0.578,η1 = −0.144,η2 = 2.874. For the polyvalent
metals, the scattering is dominated by theη0 phase shift while for transition metalsη2 plays
the same role. We fittedη0 for indium (η0 = 0.932) to obtain the experimental resistivity
of the pure metal. For nickel we have adjusted theη2 phase shift (η2 = 2.872).

The present calculations are satisfactory if one considers the crudeness of the hypothesis.
The resistivity was calculated with a hard-sphere potential. Earlier calculations on silver–
germanium resistivity [22], with both hard-sphere and experimental structure factors, showed
that the experimental structure factor has a small influence on the resistivity (≈20% in that
case). For TM–NM alloys the situation is not clear, as has been emphasized by Esposito and
Ehrenreich [19] for pure transition metals. However their calculations gave a fairly good
result for pure nickel. In the case of alloys we have calculated the resistivity by using the
phase shifts of pure metals. However the Fermi energyEF of the transition metal lies near
the resonance of theη2 phase shift (see for example figure 8.8 of Waseda’s book [8]) and
alloying influences strongly the position ofEF . Gasser [10] has shown qualitatively that
taking into account the variation ofEF on alloying reduces the maximum of the resistivity
versus concentration curve. In our case theη2 phase shift isη2 = 2.872 for pure nickel.
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Increasing the Fermi energy by adding a trivalent metal (indium) shifts theη2 phase shift
to higher values (nearπ ) which reduces the resistivity. Thus, the maximum is shifted to
a concentration which can be predicted by the qualitative explanations given before, i.e.
to a value near the middle of the phase diagram as observed experimentally. The same
arguments can also be used for the temperature coefficient. Rigorously, the phase shifts
have to be recalculated in the alloy, but this is very difficult and has never been done to
our knowledge.

In conclusion we have presented some new experimental results on a liquid transition–
polyvalent metal alloy. These results can be qualitatively understood in the framework of
the extended Faber–Ziman theory, both for the resistivity versus concentration and for its
temperature coefficient if the valence of nickel is taken to be equal to one. Improvement
of theoretical calculations must be obtained by taking into account the concentration
dependence of the phase shifts.
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